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Abstract:- Flexible-wing aircraft has more applications than traditional parafoil system for its superior flight 

performance and height controllability. In consideration of the apparent mass of parafoil and the relative motion 

between two bodies, an eight degrees of freedom (DOF) nonlinear dynamic model is proposed against the 

special structure of two-point flexible connection of the flexible-wing aircraft, including six DOF of parafoil 

and two relative motion DOF of payload. The simulation emphasizes on the analysis of the model’s relative 

motion of turning, flare landing and responses to thrust and wind disturbances. The result shows the 

flexible-wing aircraft is subjective to wind disturbance and the control may cause varying degrees of relative 

motion between two bodies, thereby further verifying model correctness and applicability.  
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1 Introduction  

Flexible-wing aircraft has gradually become a 

research hotspot in the new unmanned aircraft field 

for its excellent flight performance and application 

advantages in material delivery, reconnaissance 

and surveillance in recent years[1]. The flexi- 

ble-wing aircraft is consists of traditional parafoil 

and power plant that equipped on the back of 

payload unit so as to add height and velocity 

controllability, attitude flexibility, and improve 

application space while keeping basic functions of 

the traditional parafoil.  

Some modeling analysis methods against this 

system have been proposed both at home and 

abroad. The research [2-5] on dynamic model of 

traditional parafoil system mainly focuses on six 

DOF. The parafoil and payload were regarded as 

rigid connection. The translational motion and 

rotational motion of mass center of the whole 

system were studied. [6-9] did some research on 

eight DOF dynamic model of unpowered parafoil 

system considering relative motion between 

parafoil and payload. In paper [6], the apparent 

mass of parafoil was not taken into account in the 

model. The research [7] improved the model of [6], 

and the eight DOF model with apparent mass 

matrix was built. In [8-9], the constraint forces and 
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moments were found in the established model, and 

the responses to open-loop and closed-loop turn 

commands were simulated and analyzed. [10] 

studied the longitude motion of the flexible-wing 

aircraft. Only considering relative pitch motion, the 

simplified dynamic model of four DOF was built 

in vertical plane. And control algorithms of the 

longitude motion were studied. [11] studied the 

flexible-wing aircraft longitudinal flight perfor- 

mance aiming at a simple static model, and the 

issue of parafoil collapse was analyzed. [12-13] 

built an eight DOF nonlinear dynamic model of the 

flexible-wing aircraft neglecting relative roll 

motion between two bodies, and the friction at 

connecting points was taken into account, 

conducted simulated analysis on its motion 

characteristics after linear processing; The existing 

researches mainly con- centrate on some 

unpowered units such as parafoil-payload drop 

system but only few re- searches focus on 

modeling of the flexible-wing aircraft, which is 

one of the reasons that a reasonable nonlinear 

control method cannot be used to correctly and 

effectively control it. 

The parafoil is made of flexible fabric, so the 

apparent mass must be taken into account when 

flying in fluid after inflated completely. The 

traditional dynamic equation of rigid body has six 

DOF and always neglecting the effect of apparent 

mass. However, the multi-body structure of the 

flexible-wing aircraft is more complicated and the 

thrust and the lines deflection changes have great 

influence on the payload attitude when completing 

low-altitude and low-velocity reconnaissance, etc. 

Therefore, relative motion in flight change must be 

considered when motion characteristics of the 

flexible-wing aircraft are analyzed.  

In this paper, on the basis of previous studies, 

a mechanism method is proposed to build an eight 

DOF nonlinear dynamic model of the flexi- 

ble-wing aircraft. Regarding the parafoil and pay- 

load as single individuals, the forces acting on the 

two bodies are analyzed in their own coordinates. 

The parafoil has six DOF (translational motion 

with the mass center and rotational motion around 

the mass center), and the payload has two DOF 

(relative yaw motion and relative pitch mo- 

tion).This paper emphasizes on the analysis of 

relative motion characteristics of flexible-wing 

aircraft, so the flight motions such as turning, flare 

landing and the responses to power and wind 

disturbances are analyzed in detail. The simulation 

results verify the validity of model.  

This paper is organized as follows. In Sect. 2, 

the dynamic model of eight DOF based on a 

mechanism method is established. In Sect. 3, the 

model’s relative motion of turning, flare landing 

and responses to power are analyzed. In Sect. 4, 

simulations have been carried out for the model in 

the presence of wind disturbances. In last section, 

the research work is summarized, and some 

existing problems are indicated. 

 

2 Nonlinear dynamic model of system 

2.1 Model characteristics and assumptions 

It is necessary to conduct the following basic 

assumptions against model characteristics of the 

flexible-wing aircraft before modeling and 

analysis:  

1) Without maneuvering, the parafoil is 

considered to be a fixed shape once it has 
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completely inflated and has two planes of 

symmetries; 

2) The suspension lines of the parafoil are 

combined with the payload at two connection 

points, and the lines length change is neglected; 

3) The payload is assumed as a rigid body 

with regular shape and the lift is ignored;  

4) The ground is a plane. 

2.2 Definition of the coordinate system 

In order to facilitate analysis, three main coor- 

dinate systems are established as Fig. 1.  
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Fig. 1 Definition of coordinate system  

1) The inertial coordinate system is 

Σ (X ,Y ,Z )
I I I I

. The plane O X YI I I
 is horizontal. 

The positive direction of 
IZ  axis is perpendicular 

to the horizontal plane downward, conforming to 

right-hand system, the location of the origin is on 

the earth.  

2) The origin O p
of parafoil coordinate 

system Σ (X ,Y ,Z )p p p p
 is chosen at the center of 

gravity (CG) of the parafoil and the positive 

direction of Zp
 axis is chosen in the direction 

from O p
 to Om

, the 
pX  axis perpendicular to 

the Zp
 axis in the symmetry plane of the parafoil 

and the positive direction is taken forward. The 

Yp
 axis is perpendicular to O Z Xp p p

 plane, 

conforming to right-hand system. 

3) The origin Ov
of payload coordinate 

system Σ (X ,Y ,Z )v v v v
 is taken at the CG of the 

payload and the positive direction of Xv
 axis is 

along thrust direction, the 
vZ  axis is downward 

and perpendicular to the Xv
 axis in the symmetry 

plane, and Yv
 axis is perpendicular to O Z Xv v v

 

plane, conforming to right-hand system.  

The transformation matrix from the inertial to 

the parafoil coordinate system is defined by three 

attitude angles (
p ,

p ,
p ) of the parafoil:  

c c c s s

s s c c s s s s c c s c

c s c s s c s s s c c c

p p p p p

Ip p p p p p p p p p p p p

p p p p p p p p p p p p

    

           

           



  

 

 
 
 
  

T (1) 

For arbitrary angle  : sin s  ， cos c  .  

Assuming the suspension lines length change 

is ignored and relative rolling motion is neglected, 

the transformation matrix from the payload to the 

parafoil coordinate system can be defined by two 

attitude angles (
vp ,

vp ) of the payload which is 

relative to the parafoil:  

c c s s c

c s c s s

s 0 c

vp vp vp vp vp

vp vp vp vp vp vp

vp vp

    

    

 

 
 

  
  

T     (2) 

2.3 Dynamic equation 

2.3.1 Translational motion of the payload 

The payload is regarded as a rigid body with 

regular shape in this paper, so the motion equation 

of payload is represented by traditional momentum 

and moment momentum. The force on the payload 

mainly include aerodynamic force 
vAF , gravity 

vGF , inertial force 
vIF , tension of suspension lines 

vTF , and thrust 
vthF , and these forces satisfy Eq. 

(3):  

3 1vA vG vI vT vth     F F F F F 0       (3) 
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1) The aerodynamic force 
vAF  is given by:  

2

cos cos
1

sin
2

sin cos

v v

vA v v Dv vp v

v v

V S C

 

 

 

 
 

  
 
 

F T     (4) 

where   denotes the atmospheric density, 

2 2 2

v v v vV u v w   , 
vS  denotes the reference area 

of the payload, the lift is ignored, attack angle of 

the payload 1tan ( / )v v vw u   , the sideslip angle 

1sin ( / )v v vv V  , 
DvC  denotes the drag coeffi- 

cient. 

2) The gravity 
vGF  is given by:  

sin

cos sin

cos cos

p

vG v p p

p p

m g



 

 

 
 

  
 
 

F         (5) 

where 
vm  denotes the mass of the payload. 

3) The inertial force 
vIF  is given by:  

vI v vpm F A            (6) 

where 
vpA  is the acceleration of the payload in 

parafoil coordinate[13].  

4) The thrust 
vthF  acts to the CG of the 

payload along the 
vX  axis, which is given by:  

 
T

0 0vth vp vthXFF T        (7) 

All of the above equations are substituted into 

Eq. (3), the equation can then be written as:  

1 3( )Fv vA vG vT vth v p v vm m      E x F F F F L L (8) 

where T T T T

vp[       ]p p vp vp p p   x = V    ,and 

[ ]T

p p p pu v wV , T[ ]p p p pp q r , 

T

vp [ ]vp vpq r , and  3 1 2 3 4Fv v v vm E I L L 0 , 

and 
1pL , 

3vL , 
1vL , and 

2vL  denote matrix 

variables of 
p , 

vp , 
vp , and 

vp . 

 

2.3.2 Rotational motion of payload  

The moment due to gravity and the thrust are 

zero, since the forces act in the CG of the payload. 

The moments about the CG includes aerody- 

namic moment 
vAM , inertial moment 

vIM , and 

tension moment 
vTM , these moments satisfy Eq. 

(9): 

3 1vA vI vT   M M M 0          (9) 

1) We assume that 
vAM  is only the pitch 

moment, and is given by:  

T
21

0 0
2

vA v v v mv pv mqv vV S c C k C q    M   (10) 

where 
vc  is the reference length of the payload 

along 
vX  axis, / (2 )pv v pk c u , 

mvC  and 
mqvC  

are aerodynamic derivative coefficients of the 

payload.  

2) We assume that the payload is a rigid body 

and has two planes of symmetry, then 

0XYv YZv ZXvI I I   , the inertial moment 
vIM , is 

given by:  

1vI vI v vI  M J M             (11) 

where  

1

0 0

0 0

0 0

0 0

0 0

0 0

Xv

vI Yv

Zv

Zv Yv v v

vI Xv Zv v v

Yv Xv v v

I

I

I

I I p q

I I q r

I I p r

 
 


 
  

   
   

 
   
      

J

M

  (12) 

             

The angular velocity of the payload 
vω  in is 

given by:  

 T T
10 0 0 0v vp vp p vpq r        T  (13) 

Differentiating Eq. (13) and using the rela- 

tion 1T

vp vp

T T :  

1 2

T

v vp p v vp v  T            (14) 

where 

1

0 sin

1 0

0 cos

vp

v

vp





 
 

  
 
 

 , 
2

v

T

v vp v

p vp

p

q

r r

 
 

  
  

T . 

3) The tension moment 
vTM is:  
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1 2 1 2[ ][ ]T T T

vT vT vT vT vTM L L F F        (15) 

where 
vTRF  and 

vTLF  are the tensions of parafoil 

suspension lines at the point 
1O  and 

2O , 

respectively, the collective tension 
1vT vTR vTL F F F  

and the differential one 
2vT vTR vTL F F F , and the 

distance between 
1O  and 

2O  
vb , then: 

1

0 1 0

1 0 0

0 0 0

vT vl

 
 

 
 
  

L   2

0 0 1

0 0 0
2

1 0 0

v

vT

b
 
 


 
  

L  

All of the following equations are substituted 

into equation (9), so as to gain:  

1 2( )Mv vA vI vT vI v   E x = M M M J    (16) 

where T

3 3 1 3 4Mv vI vp vI v 
   E J T J0 0 . 

 

2.3.3 Translational motion of parafoil 

After having been inflated completely, the 

force on the parafoil mainly include gravity 
pG

F ,   

aerodynamic force 
pA

F , inertial force 
pI

F , and the 

tension 
pT

F  of suspension lines, and these forces 

satisfy Eq. (17):  

3 1pG pA pI pT 
    0F F F F        (17) 

Each force is calculated as follows:  

1) The gravity 
pG

F  is given by:  

T[ sin  cos sin  cos cos ]pG p p p p p pm g      F  (18) 

where 
pm  denotes the mass of the parafoil and 

inner air. 

2) Aerodynamic force 
pAF  of the parafoil 

includes 
pARF , which consists of lift, drag force, 

pAMF  by apparent mass, and 
pAF  by brake 

deflections, which is given by:  

pA pAR pAM pA  F F F F           (19) 

The method of segmenting treatment is used 

for calculating the aerodynamic force of the para- 

foil, which was presented by [14]. The parafoil is 

divided into eight distributed segments geometri- 

cally along the span-wise direction, shown as Fig. 

2. Aerodynamic forces of all pieces are respect- 

tively calculated and, then, the total aerodynamic 

force of the parafoil can be obtained by the 

aerodynamic forces of eight segments. 

2  46 5

8Y

1Y

cO

1Z

1


8
  

7 38 1

cY

cZ

1O8O

 

Fig. 2 The front view of segmenting of parafoil 

The equations of lift and drag can be 

represented as follow: 

2 2 T(0.5 )[  0 - ]
iL i Li ci i i i ik C S u w w u F    (20) 

T(0.5 )[  0 - ]
iD Di i i i iC S V w u F       (21) 

where 
ik  denotes the product factor, (

1 8, 0.6k k  , 

2 7, 1.0k k  , 
3 6, 1.16k k  , 

4 5, 1.24k k  ), 
ciS  

denotes piece area; 
LiC  and 

DiC are lift and drag 

coefficients.  

The total aerodynamic force 
pARF is given by:  

8

O

1

( )
c i ipAR i L D

i





 F T F F          (22) 

where OciT  denotes the transformation matrix of 

the i local coordinate system to the parafoil 

coordinate system, expressed by the angle between 

the lines and central axis, 
i , its expression is:  
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O

1 0 0

0 cos sin

0 sin cos
ci i i

i i

 

 



 
 


 
  

T         (23) 

The aerodynamic force due to apparent mass 

pAMF is given by: 

pAM a pF M V              (24) 

where 
aM denotes the apparent mass, which is 

calculated according to the method proposed by 

[15]. 

The aerodynamic force due to brake deflect- 

tions 
pAF is given by:  

sin 0

0 1

cos 0

cos cos

sin

sin cos

p

pA dypc p B e dypc p B r

p

p p

dypc p B e p

p p

F S C F S C

F S C

  





 



 

 

 

   
   

    
      

 
 

  
  

F

 (25) 

where 20.5dypc pF V ,  2 2 2

p p p pV u v w   , and 

pS  denotes the reference area of the parafoil, 
BC  , 

BC  , and 
BC   are aerodynamic derivative 

coefficients, 
p  and 

p  are attack angle and 

sideslip angle of the parafoil, 
e R L     and 

r R L     are defined, respectively , where 
L  

and 
R  are deflection of left and right brakes of 

the parafoil, respectively.   

3) The inertial force 
pIF  is given by:  

pI p pmF V             (26) 

All of the above equations are substituted into 

Eq. (17), the equation can then be written as:  

( )Fp pG pAR pA pT   E x = F F F F    (27) 

Where 3 3 9( )Fp p am 
   E I M 0  . 

 

2.3.4 Rotational motion of parafoil  

The moments about the CG of the parafoil 

mainly includes the aerodynamic moment
pAM , the 

inertial moment
pIM , and the tension moment

pTM , 

these moments expressed in Σ p
 satisfy Eq. (28):  

3 1pA pI pT   M M M 0          (28) 

Each moment is calculated as follows: 

1) The aerodynamic moment 
pAM  is 

composed of three parts (
pARM by the parafoil and 

inner air, 
pAMM  due to apparent mass, and 

pAM  

by brake deflections), the aerodynamic moment is 

then given by the following equation:  

pA pAR pAM pA  M M M M        (29) 

The local aerodynamic moment 
pARM is:  

8

O

1

( )
c c i ipAR O i L D

i





  M L T F F       (30) 

where 
cOL  denotes the position vector of the 

origin of local coordinate Oc
 in the parafoil 

coordinate system.  

The apparent mass moment 
pAMM is:  

pAM p pM J ω              (31) 

where 
pJ  denotes the inertia matrix of apparent 

mass during turning [16].  

The aerodynamic force 
pAM by brake 

deflections is given by:  

2 T T1
{ [0  0] [  0  ] }

2
pA p p e M a R N

V S b C c C C
   

   M  (32) 

where b  denotes the span, c  denotes the chord 

length, 
MC  , 

RC  , and 
NC   are aerodynamic 

derivative coefficient.  

2) The inertial moment 
pIM  is given by: 

 
1pI pI p pI  M J M          (33) 

where 
pIJ  and 

1pIM are represented by the moment 

and the product of inertial of parafoil and 
p , as in 

the same way as 
vIJ  and 

1vIM  in Eq. (12). 

3) Similarly to 
vTM , 

pTM is given by:  
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1 2 1 2[ ][ ]T T T

pT pT pT vT vTM L L F F     (34) 

where 
1 1pT pT p vpL L T  and 

2 2pT pT p vpL L T , i.e., 

1

0 1 0

1 0 0

0 0 0

pT p pl

 
 

 
 
  

L   

2

0 0 c o s

0 0 s i n
2

c o s s i n 0

vp

v

pT p vp

vp vp

b




 

 
 

  
 
 

L  

All of the above equations are substituted into 

Eq. (14), the equation can then be written as:  

1( )Mp pAR pA pI pT    E x M M M M   (35) 

where 
3 3 4 3 6Mp a pI 

   E M J0 0 .  

 

2.4 Nonlinear dynamic equation  

The nonlinear dynamic equation of the 

flexible-wing aircraft can be gained by eliminating 

the tension from Eqs. (3), (9), (17) and (35).  

1) We can use the relation 
pT vT F F  to 

eliminate the tensions from  Eq. (3) and (17), then 

we have:  

1F E x = F              (36) 

where 

1

1 3

pAR pA pG p pI vA vG

vth v p v v

m

m m

    

  

F = F F F L F F

F L L
  (37) 

F Fp Fv E E E             (38) 

2) We define the following matrix as 
T

T T

1 2
  K = K K , in which:  

 

1

2

c c 0 s c 1 0 0

c s 0 s s 0 1 0

0 1 0 0 0 0

s 0 c 0 0 1

0 0 0 0 0 1

vp vp vp vp

vp vp vp vp

vp vp

   

   

 

 
 
 
 
 

  



K

K

   (39) 

A relational expression can be gained as 

follows:  

1 2 2 4 3

T
T T

vT pT 
   K L L 0        (40) 

Multiplying 
T

vT pT
  M M  by 

1K , we can 

have: 

1 2

1 1 1 2

1 2

1

1 1

1

vT vT vT

vT vT

pT pT pT

vT

vT

pT

      
        

      

 
  

 

M L L
K K F F

M L L

L
K F

L

 (41) 

Similarly, the following equation is obtained: 

1

0

0

1

vT

vp vT T pTZ vp T vp

pT

k c r

 
   

      
   

 

M
K T M F

M
  (42) 

where 
Tk  and 

Tc  are proportionality coefficients, 

pTZF  is a component of the tension 
pTF  along 

pZ axis. 

Multiplying Eqs. (9) and (35) by K from the 

left side and using Eqs. (41) and (42) yield:  

1 2

0 1

1

2

( )

( )

Mv vA vI vI v

Mp pAR pAB pAM pI

vT

pT

     
   

      

  
       

E M M J
K x = K

E M M M M

MK

MK



 

(43) 

1K  and 
2K  are substituted into equation 

(43), so as to gain:  

1M E x = M           (44) 

where 

T
T T

M Mv Mp M Fp
   E K E E R E     (45) 

T T
T T

1 0 0 0 1 4v p M p T vpc r
         M K M M R F 0  

(46) 

 
T

TT T( ) 0 0 1M vp vp T vpk   
 

R R T  (47) 

0p pAR pA pG F = F F F       (48) 

Equation (36) and (44) are simultaneously 

satisfied, so as to gain an eight DOF dynamic 
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equation of the flexible-wing aircraft:  

Ex = F               (49) 

where  

 

T

T

T

4 8 4

F

M





 
 
 
 
 0

E

E E

I

，

T

1

T

1

T

tan ( sin cos )

cos sin

vp

p p p p p p

p p p p

p q r

q r

  

 



 



 
 
 
 
 
 
 
 

F

M

F  . 

3 Analysis of relative motion  

In order to evaluate the validity of the 

dynamic model, the simulation experiment is 

carried out aiming at a small type of the flexi- 

ble-wing aircraft. The relative motion character- 

istics are simulated and analyzed, such as turning, 

flare landing, and responses of thrust. The 

structural parameters of a small flexible-wing 

aircraft are shown as Table 1.  

Table 1 Main specification of the flexible-wing 

aircraft 

Parameter Value 

Span (b) 10.9m 

Chord length c 2.8m 

Parafoil area
pS  30

2m  

Aspect ratio (AR) 3.9 

Cord length (l) 6.2m 

Parafoil mass (
pm ) 6.3kg 

Payload mass (
vm ) 90kg 

Equivalent area of 

the payload (
vS ) 

0.75 2m  

The initial state of the flexible-wing aircraft is 

[15.6 0 0.4]T T

p V , 3 1

T

p  0 , vp [0.03 0]T T ，

[ ] [ 5.5 0]T T

vp vp    ， [ ] [0 15.1]T T

p p   , the 

initial height is 980Z m , and the initial thrust is 

248.7vth NF .  

3.1 Response to thrust change  

Calculation indicates the vehicle can level 

fight when 248.7vth NF , and the thrust is a 

medium power at this time. Velocities of two 

bodies keep the same when the aircraft is gliding 

after the parafoil is inflated completely. The main 

effect of thrust reflects in the horizontal velocity, 

the vertical velocity and the pitch angle.  

Fig. 3 shows the change curves of the 

horizontal and vertical velocity of the parafoil with 

different thrust. With the increase of thrust, the 

horizontal velocity increases toward the positive 

direction of X  axis. The main effect reflects in 

the increase of the vertical velocity toward the 

negative direction of Z  axis.   That is because 

the attack angle of parafoil increases due to the 

thrust, which results in the increase of aerodynamic 

lift, and the increase of lift leads to the increase of 

the vertical velocity. 18.6 /pu m s ， 2.2 /pw m s   

when the maximum thrust is 548.7vth NF .  

Fig. 4 and Fig. 5 show the pitch angle, relative 

pitch angle and relative pitch rate. The thrust cause 

a large oscillation in the pitch angle, and two 

bodies have obvious relative motion. The maxi- 

mum amplitude of relative pitch angle is about 

20 . That is because the thrust act to the payload, 

the speed of response of payload is faster than the 

parafoil.  
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Fig. 3 Change curves of horizontal velocity and 

vertical velocity  
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Fig. 4 Change Curves of pitch angle and relative 

pitch angle  
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Fig. 5 Change curves of relative pitch rate 

 

3.2 Motion of turning  

At 50s, the left steering line on the trailing 

edge of parafoil is pulled down in varying 

deflection until 110s. The corresponding motion 

characteristics are shown as Figs. 6, 7 and 8. 

Fig. 6 indicates the lateral velocity change, 

from which it can be seen that the lateral velocity 

increases with the increase of the deflection, and 

the maximum velocity is 4 m /pv s   when the 

deflection reaches 70%.  

The yaw angle change in Fig. 7 indicates both 

of the yaw angle and the relative yaw angle of the 

parafoil are zero in the phase of gliding. After left 

steering lines is pulled down, the yaw angle 

increases linearly, and the relative yaw angle 

increases toward the positive direction and 

stabilizes at about 3.8  when the deflection is 

70%r  . The relative motion of two bodies is 

observed. 

Fig. 8 shows trajectory of the vehicle in 

horizontal plane with different deflection. From 

Fig. 8, when pulling the left steering line, the 

vehicle turns left accordingly. The turning radius is 

inversely proportional to the deflection 

(
30% 93C m ，

50% 67C m ) and the stability becomes 

bad. It can be discovered that the relative motion 

and the oscillation of the attitude is over fierce 

when the deflection is 70%r  , and damping of 

the oscillation is poor. Therefore, it is generally 

controlled within a safety range of 50%r   in 

actual operation. 
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Fig. 6 Change curves of lateral velocities  

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS Hao Zhang, Zi-li Chen, Jingang Qiu

E-ISSN: 2224-3429 162 Volume 10, 2015



 

40 60 80 100 120 140 160

-3000

-2000

- 1000

0

time(s)

 (d
eg

)

40 60 80 100 120 140 160

-20

-10

0

10

20

time(s)

 (d
eg

)

r
δ = %30

5
r
δ = %0

7
r
δ = %0

r
δ = %30

5
r
δ = %0

7
r
δ = %0

 

Fig. 7 Change curves of yaw angle and relative 

yaw angle 
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Fig. 8 Trajectory in horizontal plane 

3.3 Motion of flare landing 

The work condition is set as that 50s, the both 

steering lines on the trailing edge of parafoil are 

pulled down by the deflection variation simul- 

taneously and quickly.  The corresponding motion 

characteristics are shown as Figs. 9, 10 and11, and 

Fig. 12 shows the trajectory of the vehicle.  

From the Figures, when the lines are pulled 

down quickly, the pitch angle and the relative pitch 

angle will oscillate, which results in oscillate of 

vertical velocity of vehicle. When 51.5t s , the 

vertical velocity decreases to the minimum 

0.51 /m s . Then the vertical velocity increases, and 

at last trend toward stabilization. So pulling down 

the both lines can realize the effect of speed 

reduction to the vehicle. If the time of maneuver is 

chosen appropriately, the vehicle will land just 

while the velocity decreases to the minimum value. 

This realizes flare landing. So, to achieve 

nondestructive landing, the timing of maneuver 

when landing is determined according to the 

practical working condition and the shock 

absorption measures. 
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Fig. 9 Change curves of vertical velocity  
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Fig. 10 Change curves of pitch angle and relative 

pitch angle 
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Fig.11 Change curves of pitch angle and relative 

pitch angle 
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Fig. 12 Trajectory (3D) 

 

4 Simulation of wind disturbances 

Compared with the fixed-wing aircraft, the 

flight velocity of the flexible-wing aircraft is lower 

(
max 18m /V s ) and the volume-to-mass ratio of 

parafoil is great. These characteristics of the 

flexible-wing aircraft make it subjective to wind 

disturbances, which may cause a significant 

oscillation as in the preceding section. Therefore, it 

is necessary to analyze its flight characteristics in 

the presence of wind disturbances.  

As Fig. 13 shows, a spherical polar coor- 

dinate system Σ (V , , )
w w w w

  is employed to define 

the wind velocity and the direction, in which Vw
 

means wind velocity, 
w  means elevation angle, 

and 
w  means azimuth angle.  

TV [sin cos sin cos cos ]w w w w w w    V
wu

=  is 

defined as the wind vector in Σ I
, and the wind 

component is 
wp Ip wu=V T V  in Σ p

, in which 
IpT  is 

the transformation matrix from Σ I
 to Σ p

.  

X
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Y
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Z
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O
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w
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V
w wu
 V

 

Fig. 13 Wind Coordinate System 

4.1 Head wind disturbances in straight 

flight 

In consideration of a straight level flight in 

head wind disturbances, the thrust is 248.7vth NF , 

and there are no left and right deflection 

(
L R 0   ). The disturbances is defined as head 

wind, the direction is 
W / 2  , 

W 0  , and the 

gust velocity is shown in Fig. 14.  

Fig. 15 shows changes of pitch angles, from 

which it can be seen that, the oscillation of the 

pitch angle still exists in the two bodies although 

the two-body flexible connection features 

self-stabilization and the relative pitch plays a role 

of damping to some extent. The maximum 

oscillation amplitudes are p 6   and 
v 8  , 

respectively, when the wind velocity is
WV 3m / s . 
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Fig. 16 shows the altitude change, in which the 

altitude oscillation is similar to the phugoid-mode 

of the fixed-wing aircraft, but the oscillation of the 

flexible-wing aircraft is due to the motion of 

pendulum which is caused by disturbances. 
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Fig. 14 Change curve of wind velocity  
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Fig. 15 Change curves of pitch angle  
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Fig. 16 Change curve of altitude 

4.2 Head variable wind disturbances in 

straight flight 

Head variable wind is defined as the 

disturbances. The Wind velocity and the direction 

changes are respectively shown in Fig. 17 and Fig. 

18, in which the wind direction elevation is 

W / 2  and the azimuth change is 
W = 10  .  

Fig. 19 shows time histories of the attitude 

angles. The large pitch oscillation occurs after the 

wind disturbance is input, and then, the variation of 

the wind direction causes the lateral-directional 

oscillations. Fig. 20 shows the trajectory of the 

vehicle in the horizontal plane, and lateral osci- 

llation offset is caused by the variation of the wind 

direction, with the maximum oscillation of 1.6m.   
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Fig. 17 Change curve of the wind velocity  
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Fig. 18 Change curve of the wind direction  
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Fig. 19 Change curve of the attitude angles  
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Fig. 20 Trajectory in horizontal plane  

4.3 Left wind disturbances  

In this case, the wind disturbance is given by 

the left side of the vehicle. The wind velocity at 

120s in Fig. 14 is selected, and the wind direction 

comes from the left side of the vehicle 

(
W / 2  ,

W = /2  ). Fig. 21 shows the attitude 

angles of the parafoil, from which the disturbance 

causes great oscillation in the yawing and rolling 

angles of the parafoil.  

The maximum amplitudes of the yaw and roll 

angles are p 21   and p 4  , and the periods 

of oscillation are 8s and 7s. The rolling and yawing 

motion is similar to the Dutch-roll mode of a 

fixed-wing aircraft. Fig. 22 shows the trajectory of 

the vehicle in the horizontal plane, in which the 

wind disturbance causes large lateral oscillation 

and the maximum amplitude is 19m at X 650m . 
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Fig. 21 Change curve of the attitude angles 
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Fig. 22 Trajectory in horizontal plane 
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4.4 Wind disturbances during right-turn  

Wind disturbances during the right-turn level 

flight is considered, the wind velocity at 120s in 

Fig. 14 is selected, and the wind direction is 

W / 2  , 
W 0  . The applied control input are 

as follows: 248.7vth NF , 
R 0.3  , 

L 0  .  

Fig. 23 shows the attitude angles of the 

parafoil. The damping of the attitude oscillation is 

very poor. Fig. 24 shows the trajectory (3D) of the 

vehicle and it can be seen that the attitude angles 

oscillation caused by wind disturbances is also 

observed.  
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Fig. 23 Change curve of the attitude angles 
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Fig. 24 Trajectory (3D) 

 

5 Conclusion  

The following researches on nonlinear 

modeling and motion characteristics against the 

multi-body structure and multi-degrees of freedom 

of the flexible-wing aircraft are conducted in this 

Paper: first, a mechanism method is used to build 

an eight DOF nonlinear dynamic model of the 

flexible-wing aircraft, in which apparent mass of 

the parafoil, relative motion between two bodies, 

and engine thrust are considered, and the eight 

DOF includes two DOF of two-body relative pitch 

and relative yaw except the parafoil’s six DOF. 

Two-body connection way and tension of sus- 

pension lines are considered in force analysis, 

conforming to actual structure characteristics, the 

modeling process is relatively detailed, which 

provides the theory reference for the research on 

control strategy; second, the relative motion 

characteristics of gliding, turning of pulling single 

line, flare landing of pulling bilateral lines 

symmetrically, and responses of power and wind 

were analyzed by simulation, and some motion law 

of the flexible-wing aircraft was obtained. The 

simulation results verified the validity of the 

established model.  

However, what is noteworthy is that: 1) the 

influence of random wind disturbances on the 

flight state of the vehicle is not considered; 2) 

different connection mode between the lines and 

payload has influence on the modeling, and the 

control mode of steering line, such as pull-down 

speed, should be considered; 3) the time delay in 

actual control response is still not considered in the 

model, which will have some influence on future 

research on control strategy. Therefore, the future 
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research will focus on model improvement and 

experimental verification.  
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